1. Work out.
$4 \times 2-1$
2. Leo is using these numbers to make a new number.

- He can use brackets,,,$+- \times$ and \div as often as he wishes.
- He cannot use any number more than once.
- He cannot use powers.
- He cannot put numbers together, e.g. he can't use 136.

What is the biggest number he can make?
Show how he can make this number.
\qquad
\qquad
\qquad

[^0](i) $(11-7) \div 2+25$

(i)

(ii) $16^{3}-\sqrt{324}$
(ii)

Calculate

$$
\sqrt{\frac{18.62}{2.78+6.72}}
$$

5. Work out.
(i) $9.5^{2}-3 \times 2.4$
(i) \qquad
(ii) $\frac{3}{8} \times \frac{2}{9}$

Give your answer as a fraction in its simplest form.
(ii) \qquad
(iii) $\frac{5.2}{2.4-0.47}$

Give your answer correct to one decimal place.
(iii) \qquad
6. Work out.
(i) $28^{2}-25 \times 30$
(i) -_----------------------------- [1]
(ii) $1-\sqrt{25}$
(ii)
7. Work out.
(i) $8 \div 100$
(i)
(ii) $\frac{8+9}{-2}$

(iii) $4+8 \times 3$
(iii)
(i) $3.7+2.5^{2}$
]

(ii) $\frac{7.6-0.35}{0.25}$
(ii)

9(a). Write down the reciprocal of 7.
(b). Wayne did this calculation and got the answer wrong.

$$
6+4^{2}-(7 \times 2)=86
$$

(i) Work out the correct answer.
\qquad
(i)
(ii) Show how Wayne could have got the answer 86.
(i) $3+4 \times 6$
(i) --------------------------------- [1]
(ii) $30-5 \times(3+1)$
(ii) --------------------------------- [2]
(b). Put brackets into these sums so that the answer is correct.
(i) $15-6-4=13$
(ii) $2+2 \times 3+8=24$
11.

Work out.

$$
(9-3 \times 2)^{2}
$$

Question		Answer/Indicative content 7	Marks 1	Part marks and guidance	
1					
		Total	1		
2		Correct answer (264) with complete correct working, e.g. $(3+1) \times 6 \times 11$	4	M3 for correct working but no final answer stated (3 + 1) $\times 6 \times 11$ or the working is poorly communicated but is clear, e.g. $(3+1) \times 6 \times 11=264$ or number greater than 200 with complete correct working Or M2 for 264 with no (or incomplete) working or for acceptable number over 200 with poorly communicated working Or M1 for number greater than 200 with no, or incomplete, working or for $(3 \times 6) \times 11$ [$\times 1$] condoning error in calculation or for two trials leading to numbers below 200 (condone poor communication) or acceptable calculation with their answer minimum 200 but error in evaluation For 1 or 2 marks 'acceptable' implies number, minimum 200, that can be made	Working correctly communicated in stages is acceptable for 4 marks, e.g. $\begin{aligned} & 3+1=4,4 \times 6=24,24 \times \\ & 11=264 \end{aligned}$ Full written explanation is also acceptable
		Total	4		
3	i	27	1		

Question		Answer/Indicative content	Marks	Part marks and guidance	
	ii	4078	2	M1 for 4096 or 18	Examiner's Comments Both parts were answered well with very few mistakes. A common error in the second calculation was to use 16^{2} instead of 16^{3} leading to an answer of 238. Those few who failed to get full marks often picked up the single mark available for 4096 (or less often 18).
		Total	3		
4		$1.4 \text { or } \frac{7}{5} \text { or } 1 \frac{2}{5}$	2	M1 for 1.96 or 9.5	Examiner's Comments Competent use of a calculator was evident in most cases and a correct answer was obtained by most candidates. Common mistakes were to divide 18.62 by 2.78 and then to add 6.72 before square rooting the result giving 3.663 ...or to only apply the square root to the numerator ($\sqrt{ } 18.62 \div 9.5=$ $0.4542 \ldots$... Candidates who failed to gain full marks often gained M1 for finding 1.96 or 9.5 . Working out was often missing making it difficult to work out the derivation of incorrect answers.
		Total	2		

Question		Answer/Indicative content	Marks	Part marks and guidance		
5						

Question		Answer/Indicative content	Marks	Part marks and guidance 7			

Question			Answer/Indicative content$\frac{1}{7}$	Marks 1	Part marks and guidance	
9	a				Examiner's Comments Better candidates seemed to understand the idea of reciprocal and applied it correctly to get $1 / 7$ while a similar number gave an answer of 1 (presumably confusing the need for a number and its reciprocal to multiply and give a result of 1). Other responses included 0.7, 14 and 49.	Accept 0.142[8...] if calculation seen
	b	i	8	1	Examiner's Comments Part (i) showed that most candidates had been taught the principles of BIDMAS and were generally able to obtain the correct answer of 8.	
		ii	Added before squaring	1	Examiner's Comments There was a variety of unsuccessful numerical attempts and many simply stated that they had not used BIDMAS. Quite a few simply did not understand what they were being asked.	Can be shown numerically
			Total	3		

Question		Answer/Indicative content	Marks	Part marks and guidance		
10	a	i	27	1		

| Question | | Answer/Indicative content | Marks | Part marks and guidance | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| 11 | | | 9 | 2 | M1 for (9-
 $6)^{2}$ or better
 Or
 SC1 for
 answer of
 144 | |
| | | | | | | |

[^0]: Calculate.

